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A new synthetic route to oligoribonucleotides based on
CpRu-catalyzed deallylation
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Abstract—A triribonucleotide 3–5 U, which is fully protected by an allyl group at the 2 0-hydroxy and phosphoric acid positions was
synthesized, the deprotection being quantitatively achieved by use of a catalytic amount of CpRu(g3-C3H5)(2-quinolinecarboxylato)
in methanol. The reaction is completed within 30 min at ambient temperature. The utility of the simple allyl protecting group has the
potential to open a new pathway in the synthesis of RNA-related compounds.
� 2007 Elsevier Ltd. All rights reserved.
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Supplying oligoribonucleotides via chemical synthesis is
of crucial importance to chemical biology.1 Particularly,
recent attention has been paid to siRNA in the develop-
ment of therapeutic agents for various biomedical appli-
cations since Fire’s discovery of RNA interference in
silencing gene expression.2 The synthesis, however, is
more difficult than that of DNA-related molecules
because of the existence of the 2 0-hydroxy group, requir-
ing two permanent protecting groups (PPG) together
with one temporary PG (TPG) in the chain elongation
process: one PPG is for the 2 0-OH and the other PPG
is for phosphoric acid. As the DMTr group is generally
used as the TPG at the 5 0-OH position, the key determi-
nant of success or failure is dependent upon the appro-
priate selection of the PPGs, particularly for 2 0-OH
protection. The tert-butyldimethylsilyl (TBDMS)3a

group is frequently used, but the high degree of steric
demand reduces efficiency in the 5 0!3 0 elongation
step.3b 2 0–3 0 Silyl transfer is also a problem. The
development of TOM, ACE, CEM, CEE, DTM, and
ABOM3b–g (below) has overcome the drawbacks, allow-
ing realization of a practical RNA chemical synthesis.1

Among such excellent 2 0-O-PPGs, the allyl group is of
note, as it is simpler than an acetyl group and is stable
toward both acidic and basic conditions. The simplicity
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is attractive, but the high stability causes a critical prob-
lem in deprotection. Recently, we have reported that
[CpRu(g3-C3H7)(2-C9H6COO)]PF6 (1)4 serves as a
catalyst for allyl ether cleavage in alcoholic solvents
(typically methanol), without the need for the additional
additives, such as metal hydride, amine, or enolate,
required for conventional Pd or Ni-based methods.5

The coproduct is only an easily removable volatile ether.
In this letter, the applicability of the highly reactive and
chemoselective allyl cleaving catalyst in the synthesis of
an RNA-related molecule is demonstrated.
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Figure 2. Synthesis of monomer 4 and terminal 5 (a: 4 mol amt O-
allyl-N,N,N 0,N 0-tetraisopropylphosphoroamidite, 0.5 mol amt diiso-
propylammonium triazolide, MS 3A, CH3CN, rt, 11 h. b: 5.1 mol amt
allyl ethyl carbonate, 0.03 mol amt Pd2(dba)3CHCl3, 0.13 mol amt
DPPB, THF, 85 �C, 1 h. c: 5 mol amt Cl2CHCOOH, CH2Cl2, rt, 4 h.
d: 10 mol amt (Z)-o-nitrobenzoxime, 8.9 mol amt ((CH3)2N)2C@NH,
CH3CN, rt, 11 h).
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One of the simplest oligoribonucleotides, 3–5 U (2
(n = 1)), was chosen as the target molecule.6 The objec-
tive was one step deprotection to 2 (n = 1) from 3 (n =
1), in which the 2 0-OH, terminal 3 0-OH, and POH are
fully protected as PPG by an allyl group. Compound 3
(n = 1) was synthesized in 70% total yield from the 2 0-
O-allyl/30-O-P(N(i-C3H7)2)(OCH2CH@CH2)/50-O-DMTr
protected phosphoramidite monomer 4 and the 2 0-O-
allyl/3 0-O-allyl protected terminal ribonucleoside 5
according to the well established synthetic cycle shown
in Figure 1,7 though n = 1 in the present case. Terminal
ribonucleoside 5 was coupled with phosphoroamidite 4
in acetonitrile by use of N-phenylimidazolium triflate
and molecular sieves 3A, followed by treatment with
tert-butylhydroperoxide, giving the DMTr-protected
diribonucleoside (n = 0). Deprotection of DMTr TPG
with Cl2CHCOOH proceeded quantitatively to give 3
(n = 0) in 94% isolated yield in three steps. A second
condensation of dimer 3 (n = 0) with monomer 4
followed by oxidation completed the synthetic cycle.
Removal of the DMTr group afforded 3 (n = 1) in 74%
isolated yield. The condensation of 4 with 3 proceeds
smoothly, completing within 30 min at ambient
temperature.

Figure 2 illustrates the synthetic procedure for monomer
4 and the terminal product 5. The known 2 0-O-allyl-
uridine8 was converted to 4 in 82% yield via selective
DMTr protection of 5 0-OH followed by phosphorami-
dation of 3 0-OH using O-allyl-N,N,N 0,N 0-tetraisopropyl
phosphorodiamidite. Next, the two hydroxy groups at
C(2 0) and C(3 0) of the 5 0-O trytylated 4-O-(2-nitro-
phenyl)uridine9 were allylated by use of allyl ethyl car-
bonate in the presence of a Pd(0) complex and DPPB
(substrate/catalyst = 32, THF, 85 �C, 3 h).10 Acidic
DMTr deprotection of 5 0-OH followed by removal of
the o-nitrophenyl group by aromatic nucleophilic substi-
tution using tetramethylguanidine11 afforded 5 in 63%
three-step yield.

The 2 0-O-, terminal 3 0-O-, and P-O-allylated compound
3 (n = 1) was then subjected to [CpRu(g3-C3H5)(C9H6-
NCOO)]PF6-catalyzed deallylation conditions ([1] =
O
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Figure 1. Synthetic cycle for allyl-based RNA synthesis and the
simplest target 3–5 U (a: coupling with 4, b: removal of DMTr).
0.5 mM, [3 (n = 1)] = 1 mM, CD3OD, 25 �C). The reac-
tion was completed within 30 min to give 3–5 U (2 (n =
1)) in quantitative yield as shown in Figure 3. The 31P
catalyst
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Figure 3. 31P and 1H NMR spectra of 3–5 U deallylation (CD3OD,
25 �C. a: 31P of 3 (n = 1), b: 31P of reaction mixture, c and d: 1H of 3

(n = 1), e and f: 1H of reaction mixture).
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signals of substrate 3 (n = 1) resonate at d �1.41 and
�1.54 as broad singlets (Fig. 3a), due to the two phos-
phorous stereogenic centers generating four possible
diastereomers. Upon deallylation, the signals completely
disappear, converging into a new single 31P signal at d
�0.76. The 31P NMR data indicates that the stereogenic
P-containing phosphoric triester is transformed into a
non-stereogenic P-containing phosphoric diester, and
that the two phosphorous atoms are in similar magnetic
environments. This behavior parallels that of the 1H
NMR. Each of the four diastereomers of 3 (n = 1) has
six allyl groups, making the 1H NMR spectrum compli-
cated, as shown in blue in Figure 3c (uracil region) and
3d (allyl region). The deallylation process leads to a sim-
ple spectrum (3e and f). The red-colored signal corre-
sponds to 3–5 U, while the green one is the coproduct,
CH2@CHCH2OCD3. All of allyl signals of 3 (n = 1)
appearing at d 5.0–5.5 and d 5.9 (blue) are lost to give
the red and green signals. The signal intensity ratio of
all the protons of 3–5 U to the five allyl protons is ca.
1:6, consistent with the ratio expected for full removal
of the allyl PPG. The TOF MS shows two peaks at
427.07 and 877.15, which can be assigned to the di-
phosphorate dianion and its monosodium salt (M2�/2:
calcd 427.05. MNa�: calcd 877.09. (ESI, negative)).
Reverse-phase HPLC analysis also indicates the forma-
tion of a single compound, (tR = 2.9 min (ODS-UG
0.45 · 25 cm, 4:1 CH3OH–H2O, 1.0 mL/min)).
This experimental data clearly indicates the quantitative
deallylation of 3 (n = 1) to 3–5 U. The deallylation
product was isolated as the diethylammonium salt.12

Success in the chemical synthesis of RNA-related mole-
cules depends strongly on the appropriate selection of
PPG that causes neither 2 0,3 0 shift nor deceleration of
3 0,5 0 chain elongation. The simple and readily available
allyl group is attractive, given the availability of a deallyl-
ation method operating under very mild conditions.
No such ideal catalytic system retards utilization of
the allyl group. Although the ratio of 1 to allyl PPG is
only 12, even with a simple triribonucleotide at the pres-
ent stage,13 the success of the new Ru catalyst opens a
new pathway to the chemical synthesis of RNA-related
compounds. The search for a more efficient catalytic sys-
tem is ongoing.
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